Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 551
Filtrar
1.
Nat Genet ; 56(2): 306-314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238628

RESUMO

Although promoters and their enhancers are frequently contained within a topologically associating domain (TAD), some developmentally important genes have their promoter and enhancers within different TADs. Hypotheses about molecular mechanisms enabling cross-TAD interactions remain to be assessed. To test these hypotheses, we used optical reconstruction of chromatin architecture to characterize the conformations of the Pitx1 locus on single chromosomes in developing mouse limbs. Our data support a model in which neighboring boundaries are stacked as a result of loop extrusion, bringing boundary-proximal cis-elements into contact. This stacking interaction also contributes to the appearance of architectural stripes in the population average maps. Through molecular dynamics simulations, we found that increasing boundary strengths facilitates the formation of the stacked boundary conformation, counter-intuitively facilitating border bypass. This work provides a revised view of the TAD borders' function, both facilitating and preventing cis-regulatory interactions, and introduces a framework to distinguish border-crossing from border-respecting enhancer-promoter pairs.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Animais , Camundongos , Elementos Facilitadores Genéticos/genética , Cromatina/genética , Cromossomos , Regiões Promotoras Genéticas/genética , Elementos Isolantes
2.
Monoclon Antib Immunodiagn Immunother ; 42(4): 140-144, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37624609

RESUMO

During the past decades, tremendous advances have occurred in manufacturing recombinant therapeutic proteins in Chinese hamster ovary (CHO) cells. Nevertheless, the production of stable high-producing cell lines has remained a major obstacle in the development process of the CHO cell line. It has been shown that genomic regulatory elements can promote cell line development efficiency by improving transgenes' productivity and stability. Such elements include insulators, ubiquitous chromatin opening elements, scaffold/matrix attachment regions, and antirepressors. In addition, tDNA elements are shown to act as insulators in mammalian cells. This study examines the effect of the tDNA insulator on stable expression of a vascular endothelial growth factor receptor-Fc fusion protein.


Assuntos
Elementos Isolantes , Fator A de Crescimento do Endotélio Vascular , Animais , Cricetinae , Células CHO , Cricetulus , Anticorpos Monoclonais , Receptores de Fatores de Crescimento do Endotélio Vascular
3.
Mol Biol (Mosk) ; 57(1): 109-123, 2023.
Artigo em Russo | MEDLINE | ID: mdl-36976746

RESUMO

CP190 protein is one of the key components of Drosophila insulator complexes, and its study is important for understanding the mechanisms of gene regulation during cell differentiation. However, Cp190 mutants die before reaching adulthood, which significantly complicates the study of its functions in imago. To overcome this problem and to investigate the regulatory effects of CP190 in adult tissues development, we have designed a conditional rescue system for Cp190 mutants. Using Cre/loxP-mediated recombination, the rescue construct containing Cp190 coding sequence is effectively eliminated specifically in spermatocytes, allowing us to study the effect of the mutation in male germ cells. Using high-throughput transcriptome analysis we determined the function of CP190 on gene expression in germline cells. Cp190 mutation was found to have opposite effects on tissue-specific genes, which expression is repressed by CP190, and housekeeping genes, that require CP190 for activation. Mutation of Cp190 also promoted expression of a set of spermatocyte differentiation genes that are regulated by tMAC transcriptional complex. Our results indicate that the main function of CP190 in the process of spermatogenesis is the coordination of interactions between differentiation genes and their specific transcriptional activators.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Espermatócitos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/genética , Proteínas Associadas aos Microtúbulos/genética , Drosophila/genética , Diferenciação Celular/genética , Elementos Isolantes
4.
Sci Adv ; 9(5): eade0090, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36735780

RESUMO

Drosophila insulators were the first DNA elements found to regulate gene expression by delimiting chromatin contacts. We still do not know how many of them exist and what impact they have on the Drosophila genome folding. Contrary to vertebrates, there is no evidence that fly insulators block cohesin-mediated chromatin loop extrusion. Therefore, their mechanism of action remains uncertain. To bridge these gaps, we mapped chromatin contacts in Drosophila cells lacking the key insulator proteins CTCF and Cp190. With this approach, we found hundreds of insulator elements. Their study indicates that Drosophila insulators play a minor role in the overall genome folding but affect chromatin contacts locally at many loci. Our observations argue that Cp190 promotes cobinding of other insulator proteins and that the model, where Drosophila insulators block chromatin contacts by forming loops, needs revision. Our insulator catalog provides an important resource to study mechanisms of genome folding.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos Isolantes/genética , Proteínas Nucleares/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo
5.
PLoS Genet ; 18(10): e1010396, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36197938

RESUMO

Chromatin insulators are responsible for orchestrating long-range interactions between enhancers and promoters throughout the genome and align with the boundaries of Topologically Associating Domains (TADs). Here, we demonstrate an association between gypsy insulator proteins and the phosphorylated histone variant H2Av (γH2Av), normally a marker of DNA double strand breaks. Gypsy insulator components colocalize with γH2Av throughout the genome, in polytene chromosomes and in diploid cells in which Chromatin IP data shows it is enriched at TAD boundaries. Mutation of insulator components su(Hw) and Cp190 results in a significant reduction in γH2Av levels in chromatin and phosphatase inhibition strengthens the association between insulator components and γH2Av and rescues γH2Av localization in insulator mutants. We also show that γH2Av, but not H2Av, is a component of insulator bodies, which are protein condensates that form during osmotic stress. Phosphatase activity is required for insulator body dissolution after stress recovery. Together, our results implicate the H2A variant with a novel mechanism of insulator function and boundary formation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Cromatina/genética , Cromatina/metabolismo , DNA/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/genética , Histonas/metabolismo , Elementos Isolantes/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Monoéster Fosfórico Hidrolases/genética , Cromossomos Politênicos/genética
6.
Transgenic Res ; 31(6): 647-660, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36053433

RESUMO

Insulators in vertebrates play a role in genome architecture and orchestrate temporo-spatial enhancer-promoter interactions. In plants, insulators and their associated binding factors have not been documented as of yet, largely as a result of a lack of characterized insulators. In this study, we took a comprehensive strategy to identify and validate the enhancer-blocking insulator CW198. We show that a 1.08-kb CW198 fragment from Arabidopsis can, when interposed between an enhancer and a promoter, efficiently abrogate the activation function of both constitutive and floral organ-specific enhancers in transgenic Arabidopsis and tobacco plants. In plants, both transcriptional crosstalk and spreading of histone modifications were rarely detectable across CW198, which resembles the insulation property observed across the CTCF insulator in the mammalian genome. Taken together, our findings support that CW198 acts as an enhancer-blocking insulator in both Arabidopsis and tobacco. The significance of the present findings and their relevance to the mitigation of mutual interference between enhancers and promoters, as well as multiple promoters in transgenes, is discussed.


Assuntos
Arabidopsis , Elementos Isolantes , Animais , Elementos Isolantes/genética , Elementos Facilitadores Genéticos/genética , Arabidopsis/genética , Regiões Promotoras Genéticas/genética , Transgenes/genética , Mamíferos/genética
7.
G3 (Bethesda) ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36029240

RESUMO

The Drosophila Boundary Element-Associated Factor of 32 kDa (BEAF) binds in promoter regions of a few thousand mostly housekeeping genes. BEAF is implicated in both chromatin domain boundary activity and promoter function, although molecular mechanisms remain elusive. Here, we show that BEAF physically interacts with the polybromo subunit (Pbro) of PBAP, a SWI/SNF-class chromatin remodeling complex. BEAF also shows genetic interactions with Pbro and other PBAP subunits. We examine the effect of this interaction on gene expression and chromatin structure using precision run-on sequencing and micrococcal nuclease sequencing after RNAi-mediated knockdown in cultured S2 cells. Our results are consistent with the interaction playing a subtle role in gene activation. Fewer than 5% of BEAF-associated genes were significantly affected after BEAF knockdown. Most were downregulated, accompanied by fill-in of the promoter nucleosome-depleted region and a slight upstream shift of the +1 nucleosome. Pbro knockdown caused downregulation of several hundred genes and showed a correlation with BEAF knockdown but a better correlation with promoter-proximal GAGA factor binding. Micrococcal nuclease sequencing supports that BEAF binds near housekeeping gene promoters while Pbro is more important at regulated genes. Yet there is a similar general but slight reduction of promoter-proximal pausing by RNA polymerase II and increase in nucleosome-depleted region nucleosome occupancy after knockdown of either protein. We discuss the possibility of redundant factors keeping BEAF-associated promoters active and masking the role of interactions between BEAF and the Pbro subunit of PBAP in S2 cells. We identify Facilitates Chromatin Transcription (FACT) and Nucleosome Remodeling Factor (NURF) as candidate redundant factors.


Assuntos
Proteínas de Drosophila , Elementos Isolantes , Animais , Montagem e Desmontagem da Cromatina , Nucleossomos/genética , Nucleossomos/metabolismo , Nuclease do Micrococo/genética , Nuclease do Micrococo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Drosophila/genética , Drosophila/metabolismo , Cromatina/genética , Cromatina/metabolismo
8.
Dokl Biochem Biophys ; 505(1): 173-175, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36038685

RESUMO

CTCF is the most thoroughly studied chromatin architectural protein and it is found in both Drosophila and mammals. CTCF preferentially binds to promoters and insulators and is thought to facilitate formation of chromatin loops. In a subset of sites, CTCF binding depends on the epigenetic status of the surrounding chromatin. One such variable CTCF site (vCTCF) was found in the intron of the Ubx gene, in close proximity to the BRE and abx enhancers. CTCF binds to the variable site in tissues where Ubx gene is active, suggesting that the vCTCF site plays a role in facilitating contacts between the Ubx promoter and its enhancers. Using CRISPR/Cas9 and attP/attB site-specific integration methods, we investigated the functional role of vCTCF and showed that it is not required for normal Drosophila development. Furthermore, a 2161-bp fragment containing vCTCF does not function as an effective insulator when substituted for the Fab-7 boundary in the Bithorax complex. Our results suggest that vCTCF function is redundant in the regulation of Ubx.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromatina/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/metabolismo , Elementos Isolantes/genética , Mamíferos/genética , Mamíferos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
10.
Nucleic Acids Res ; 50(14): 7906-7924, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819192

RESUMO

Chromatin insulators are DNA-protein complexes that can prevent the spread of repressive chromatin and block communication between enhancers and promoters to regulate gene expression. In Drosophila, the gypsy chromatin insulator complex consists of three core proteins: CP190, Su(Hw), and Mod(mdg4)67.2. These factors concentrate at nuclear foci termed insulator bodies, and changes in insulator body localization have been observed in mutants defective for insulator function. Here, we identified NURF301/E(bx), a nucleosome remodeling factor, as a novel regulator of gypsy insulator body localization through a high-throughput RNAi imaging screen. NURF301 promotes gypsy-dependent insulator barrier activity and physically interacts with gypsy insulator proteins. Using ChIP-seq, we found that NURF301 co-localizes with insulator proteins genome-wide, and NURF301 promotes chromatin association of Su(Hw) and CP190 at gypsy insulator binding sites. These effects correlate with NURF301-dependent nucleosome repositioning. At the same time, CP190 and Su(Hw) both facilitate recruitment of NURF301 to chromatin. Finally, Oligopaint FISH combined with immunofluorescence revealed that NURF301 promotes 3D contact between insulator bodies and gypsy insulator DNA binding sites, and NURF301 is required for proper nuclear positioning of gypsy binding sites. Our data provide new insights into how a nucleosome remodeling factor and insulator proteins cooperatively contribute to nuclear organization.


Assuntos
Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , DNA/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elementos Isolantes/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo
11.
Elife ; 112022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678392

RESUMO

In mammalian cells genes that are in close proximity can be transcriptionally coupled: silencing or activating one gene can affect its neighbors. Understanding these dynamics is important for natural processes, such as heterochromatin spreading during development and aging, and when designing synthetic gene regulation circuits. Here, we systematically dissect this process in single cells by recruiting and releasing repressive chromatin regulators at dual-gene synthetic reporters, and measuring how fast gene silencing and reactivation spread as a function of intergenic distance and configuration of insulator elements. We find that silencing by KRAB, associated with histone methylation, spreads between two genes within hours, with a time delay that increases with distance. This fast KRAB-mediated spreading is not blocked by the classical cHS4 insulators. Silencing by histone deacetylase HDAC4 of the upstream gene can also facilitate background silencing of the downstream gene by PRC2, but with a days-long delay that does not change with distance. This slower silencing can sometimes be stopped by insulators. Gene reactivation of neighboring genes is also coupled, with strong promoters and insulators determining the order of reactivation. Our data can be described by a model of multi-gene regulation that builds upon previous knowledge of heterochromatin spreading, where both gene silencing and gene reactivation can act at a distance, allowing for coordinated dynamics via chromatin regulator recruitment.


Assuntos
Cromatina , Heterocromatina , Animais , Cromatina/genética , Regulação da Expressão Gênica , Inativação Gênica , Heterocromatina/genética , Elementos Isolantes , Mamíferos/genética
12.
PLoS Genet ; 18(3): e1010110, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35324887

RESUMO

Germline stem cells (GSCs) are the progenitor cells of the germline for the lifetime of an animal. In Drosophila, these cells reside in a cellular niche that is required for both their maintenance (self-renewal) and differentiation (asymmetric division resulting in a daughter cell that differs from the GSC). The stem cell-daughter cell transition is tightly regulated by a number of processes, including an array of proteins required for genome stability. The germline stem-cell maintenance factor Stonewall (Stwl) associates with heterochromatin, but its molecular function is poorly understood. We performed RNA-Seq on stwl mutant ovaries and found significant derepression of many transposon families but not heterochromatic genes. We also discovered inappropriate expression of multiple classes of genes. Most prominent are testis-enriched genes, including the male germline sex-determination switch Phf7, the differentiation factor bgcn, and a large testis-specific gene cluster on chromosome 2, all of which are upregulated or ectopically expressed in stwl mutant ovaries. Surprisingly, we also found that RNAi knockdown of stwl in somatic S2 cells results in ectopic expression of these testis genes. Using parallel ChIP-Seq and RNA-Seq experiments in S2 cells, we discovered that Stwl localizes upstream of transcription start sites and at heterochromatic sequences including repetitive sequences associated with telomeres. Stwl is also enriched at bgcn, suggesting that it directly regulates this essential differentiation factor. Finally, we identify Stwl binding motifs that are shared with known insulator binding proteins. We propose that Stwl affects gene regulation, including repression of male transcripts in the female germline, by binding insulators and establishing chromatin boundaries.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Drosophila , Drosophila melanogaster , Fatores de Transcrição , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Células Germinativas/metabolismo , Proteínas de Homeodomínio/genética , Elementos Isolantes/genética , Masculino , Ovário/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Dokl Biochem Biophys ; 502(1): 21-24, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35275301

RESUMO

The segment-specific regulatory domains of the Bithorax complex (BX-C), which consists of three homeotic genes Ubx, abd-A and Abd-B, are separated by boundaries that function as insulators. Most of the boundaries contain binding sites for the architectural protein CTCF, which is conserved for higher eukaryotes. As was shown previously, the CTCF sites determine the insulator activity of the boundaries of the Abd-B regulatory region. In this study, it was shown that fragments of the Fab-3 and Fab-4 boundaries of the abd-A regulatory region, containing CTCF binding sites, are not effective insulators.


Assuntos
Fator de Ligação a CCCTC , Proteínas de Drosophila , Drosophila melanogaster , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Elementos Isolantes , Fatores de Transcrição/metabolismo
14.
Gene ; 819: 146208, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35092858

RESUMO

Insulators play important roles in genome structure and function in eukaryotes. Interactions between a DNA binding insulator protein and its interacting partner proteins define the properties of each insulator site. The different roles of insulator protein partners in the Drosophila genome and how they confer functional specificity remain poorly understood. The Suppressor of Hairy wing [Su(Hw)] insulator is targeted to the nuclear lamina, preferentially localizes at euchromatin/heterochromatin boundaries, and is associated with the gypsy retrotransposon. Insulator activity relies on the ability of the Su(Hw) protein to bind the DNA at specific sites and interact with Mod(mdg4)67.2 and CP190 partner proteins. HP1 and insulator partner protein 1 (HIPP1) is a partner of Su(Hw), but how HIPP1 contributes to the function of Su(Hw) insulator complexes is unclear. Here, we demonstrate that HIPP1 colocalizes with the Su(Hw) insulator complex in polytene chromatin and in stress-induced insulator bodies. We find that the overexpression of either HIPP1 or Su(Hw) or mutation of the HIPP1 crotonase-like domain (CLD) causes defects in cell proliferation by limiting the progression of DNA replication. We also show that HIPP1 overexpression suppresses the Su(Hw) insulator enhancer-blocking function, while mutation of the HIPP1 CLD does not affect Su(Hw) enhancer blocking. These findings demonstrate a functional relationship between HIPP1 and the Su(Hw) insulator complex and suggest that the CLD, while not involved in enhancer blocking, influences cell cycle progression.


Assuntos
Proteínas de Transporte/genética , Replicação do DNA , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Elementos Isolantes , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Animais , Proteínas de Transporte/metabolismo , Proliferação de Células , Elementos Facilitadores Genéticos , Heterocromatina/metabolismo , Mutação , Proteínas Repressoras/metabolismo
15.
Nat Commun ; 13(1): 434, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064117

RESUMO

Transcriptional terminators signal where transcribing RNA polymerases (RNAPs) should halt and disassociate from DNA. However, because termination is stochastic, two different forms of transcript could be produced: one ending at the terminator and the other reading through. An ability to control the abundance of these transcript isoforms would offer bioengineers a mechanism to regulate multi-gene constructs at the level of transcription. Here, we explore this possibility by repurposing terminators as 'transcriptional valves' that can tune the proportion of RNAP read-through. Using one-pot combinatorial DNA assembly, we iteratively construct 1780 transcriptional valves for T7 RNAP and show how nanopore-based direct RNA sequencing (dRNA-seq) can be used to characterize entire libraries of valves simultaneously at a nucleotide resolution in vitro and unravel genetic design principles to tune and insulate termination. Finally, we engineer valves for multiplexed regulation of CRISPR guide RNAs. This work provides new avenues for controlling transcription and demonstrates the benefits of long-read sequencing for exploring complex sequence-function landscapes.


Assuntos
Engenharia Genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro/genética , Análise de Sequência de RNA , Pareamento de Bases , Sequência de Bases , Sistemas CRISPR-Cas/genética , Biblioteca Gênica , Elementos Isolantes/genética , Sequenciamento por Nanoporos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/metabolismo , Regiões Terminadoras Genéticas , Terminação da Transcrição Genética
16.
Genome Res ; 32(3): 425-436, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35082140

RESUMO

The specificity of interactions between genomic regulatory elements and potential target genes is influenced by the binding of insulator proteins such as CTCF, which can act as potent enhancer blockers when interposed between an enhancer and a promoter in a reporter assay. But not all CTCF sites genome-wide function as insulator elements, depending on cellular and genomic context. To dissect the influence of genomic context on enhancer blocker activity, we integrated reporter constructs with promoter-only, promoter and enhancer, and enhancer blocker configurations at hundreds of thousands of genomic sites using the Sleeping Beauty transposase. Deconvolution of reporter activity by genomic position reveals distinct expression patterns subject to genomic context, including a compartment of enhancer blocker reporter integrations with robust expression. The high density of integration sites permits quantitative delineation of characteristic genomic context sensitivity profiles and their decomposition into sensitivity to both local and distant DNase I hypersensitive sites. Furthermore, using a single-cell expression approach to test the effect of integrated reporters for differential expression of nearby endogenous genes reveals that CTCF insulator elements do not completely abrogate reporter effects on endogenous gene expression. Collectively, our results lend new insight into genomic regulatory compartmentalization and its influence on the determinants of promoter-enhancer specificity.


Assuntos
Elementos Facilitadores Genéticos , Elementos Isolantes , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Genômica , Regiões Promotoras Genéticas
17.
Sci Rep ; 11(1): 23233, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853328

RESUMO

The genome-wide promoter interactome is primarily maintained and regulated by architectural proteins such as CTCF and cohesin. However, some studies suggest a role for non-coding RNAs (ncRNAs) in this process. We aimed to characterise the regulatory role of RNA-mediated promoter interactions in the control of gene expression. We integrated genome-wide datasets of RNA-chromatin and promoter-genome interactions in human embryonic stem cells (hESCs) to identify putative RNA-mediated promoter interactions. We discovered that CTCF sites were enriched in RNA-PIRs (promoter interacting regions co-localising with RNA-chromatin interaction sites) and genes interacting with RNA-PIRs containing CTCF sites showed higher expression levels. One of the long noncoding RNAs (lncRNAs) expressed in hESCs, Syntaxin 18-Antisense 1 (STX18-AS1), appeared to be involved in an insulating promoter interaction with the neighbouring gene, MSX1. By knocking down STX18-AS1, the MSX1 promoter-PIR interaction was intensified and the target gene (MSX1) expression was down-regulated. Conversely, reduced MSX1 promoter-PIR interactions, resulting from CRISPR-Cas9 deletion of the PIR, increased the expression of MSX1. We conclude that STX18-AS1 RNA antagonised local CTCF-mediated insulating promoter interactions to augment gene expression. Such down-regulation of the insulating promoter interactions by this novel mechanism may explain the higher expression of genes interacting with RNA-PIRs linked to CTCF sites.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/metabolismo , Fator de Ligação a CCCTC/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas , Humanos , Elementos Isolantes/genética , RNA Antissenso/genética
18.
Yi Chuan ; 43(9): 816-821, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34702695

RESUMO

In interphase eukaryotic nuclei, chromatin is folded to form a higher-order topological structure. The spatial organization of such chromatin domain has an important impact on the regulation of gene expression. As a key architectural structural protein, CTCF (CCCTC-binding factor) plays an important role in the formation of chromatin three-dimensional chromatin structure. CTCF can also bind to many insulator elements in the genome and insulate enhancers from activating target genes via modulating remote chromatin interactions. A recent study by Dr. Chunliang Li and his team at St. Jude Children's Research Hospital in the United States showed that when CTCF was acutely degraded, significant changes were found in the three-dimensional structure of chromatin. The mechanism by which CTCF binding sites function as insulator elements was investigated by Prof. Qiang Wu's team at Institute of Systems Biomedicine and Shanghai Jiao Tong University in China and Prof. Bing Ren's team at Ludwig Institute for Cancer Research in the United States. Here we mainly review and discuss some of these latest progresses.


Assuntos
Genoma , Elementos Isolantes , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Criança , China , Cromatina/genética , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Elementos Isolantes/genética
19.
Genes (Basel) ; 12(9)2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34573404

RESUMO

The genomes of higher eukaryotes are partitioned into topologically associated domains or TADs, and insulators (also known as boundary elements) are the key elements responsible for their formation and maintenance. Insulators were first identified and extensively studied in Drosophila as well as mammalian genomes, and have also been described in yeast and plants. In addition, many insulator proteins are known in Drosophila, and some have been investigated in mammals. However, much less is known about this important class of non-coding DNA elements in plant genomes. In this review, we take a detailed look at known plant insulators across different species and provide an overview of potential determinants of plant insulator functions, including cis-elements and boundary proteins. We also discuss methods previously used in attempts to identify plant insulators, provide a perspective on their importance for research and biotechnology, and discuss areas of potential future research.


Assuntos
Elementos Isolantes/genética , Plantas/genética , Animais , Drosophila , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Mamíferos , Plantas/classificação
20.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34531299

RESUMO

Habituation and sensitization (nonassociative learning) are among the most fundamental forms of learning and memory behavior present in organisms that enable adaptation and learning in dynamic environments. Emulating such features of intelligence found in nature in the solid state can serve as inspiration for algorithmic simulations in artificial neural networks and potential use in neuromorphic computing. Here, we demonstrate nonassociative learning with a prototypical Mott insulator, nickel oxide (NiO), under a variety of external stimuli at and above room temperature. Similar to biological species such as Aplysia, habituation and sensitization of NiO possess time-dependent plasticity relying on both strength and time interval between stimuli. A combination of experimental approaches and first-principles calculations reveals that such learning behavior of NiO results from dynamic modulation of its defect and electronic structure. An artificial neural network model inspired by such nonassociative learning is simulated to show advantages for an unsupervised clustering task in accuracy and reducing catastrophic interference, which could help mitigate the stability-plasticity dilemma. Mott insulators can therefore serve as building blocks to examine learning behavior noted in biology and inspire new learning algorithms for artificial intelligence.


Assuntos
Algoritmos , Aplysia/fisiologia , Inteligência Artificial , Elementos Isolantes , Redes Neurais de Computação , Níquel/química , Sinapses/fisiologia , Animais , Elétrons , Modelos Neurológicos , Plasticidade Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...